-x
|
90°-x
|
90°+x
|
180°-x
|
180°+x
|
270°-x
|
270°+x
|
360°-x
|
360°+x
|
|
sin
|
-sin x
|
cos x
|
cos x
|
sin x
|
-sin x
|
-cos x
|
-cos x
|
-sin x
|
sin x
|
cos
|
cos x
|
sin x
|
-sin x
|
-cos x
|
-cos x
|
-sin x
|
sin x
|
cos x
|
cos x
|
Tan
|
-tan x
|
1/tan x
|
-1/tan x
|
-tan x
|
tan x
|
1/tan x
|
-1/tan x
|
-tan x
|
tan x
|
Remarks:
When theta is 90° ± x or 270° ± x, sinàcos, cosàsin, tanà 1/tan. The sign is determined by the original sin/cos/tan in the given quadrant, assuming 0° ≤ x ≤ 90°.
For example: sin (90°+ x), assuming 0° ≤ x ≤ 90°
90°+ x should be in quadrant II and sin is positive in quadrant II.
So, sin (90°+ x) = +cos x
Actually, the answer can be easily checked just by randomly assigning a value for x and see whether sin (90°+ x) = +cos x
The following are some tricky questions.
Answer : A
Try to find out the pattern
Answer : B
To make a fraction smaller, we want the numerator(分子) smaller and the denominator(分母) greater.
Also, recall sin x ranges from -1 to 1
沒有留言:
張貼留言