Trigonometric Equations


-x
90°-x
90°+x
180°-x
180°+x
270°-x
270°+x
360°-x
360°+x
sin
-sin x
cos x
cos x
sin x
-sin x
-cos x
-cos x
-sin x
sin x
cos
cos x
sin x
-sin x
-cos x
-cos x
-sin x
sin x
cos x
cos x
Tan
-tan x
1/tan x
-1/tan x
-tan x
tan x
1/tan x
-1/tan x
-tan x
tan x


Remarks: 
When theta is 90° ± x or 270° ± x, sinàcos, cosàsin, tanà 1/tan. The sign is determined by the original sin/cos/tan in the given quadrant, assuming 0°  x  90°.

For example: sin (90°+ x), assuming 0°  x  90°
90°+ x should be in quadrant II and sin is positive in quadrant II.
So, sin (90°+ x) = +cos x

Actually, the answer can be easily checked just by randomly assigning a value for x and see whether sin (90°+ x) = +cos x

The following are some tricky questions.








Answer : A








Try to find out the pattern
























Answer : B






To make a fraction smaller, we want the numerator(分子) smaller and the denominator(分母) greater. 

Also, recall sin x ranges from -1 to 1

沒有留言:

張貼留言